Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Am J Hum Genet ; 109(5): 885-899, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35325614

RESUMO

Genome-wide association studies (GWASs) of Huntington disease (HD) have identified six DNA maintenance gene loci (among others) as modifiers and implicated a two step-mechanism of pathogenesis: somatic instability of the causative HTT CAG repeat with subsequent triggering of neuronal damage. The largest studies have been limited to HD individuals with a rater-estimated age at motor onset. To capitalize on the wealth of phenotypic data in several large HD natural history studies, we have performed algorithmic prediction by using common motor and cognitive measures to predict age at other disease landmarks as additional phenotypes for GWASs. Combined with imputation with the Trans-Omics for Precision Medicine reference panel, predictions using integrated measures provided objective landmark phenotypes with greater power to detect most modifier loci. Importantly, substantial differences in the relative modifier signal across loci, highlighted by comparing common modifiers at MSH3 and FAN1, revealed that individual modifier effects can act preferentially in the motor or cognitive domains. Individual components of the DNA maintenance modifier mechanisms may therefore act differentially on the neuronal circuits underlying the corresponding clinical measures. In addition, we identified additional modifier effects at the PMS1 and PMS2 loci and implicated a potential second locus on chromosome 7. These findings indicate that broadened discovery and characterization of HD genetic modifiers based on additional quantitative or qualitative phenotypes offers not only the promise of in-human validated therapeutic targets but also a route to dissecting the mechanisms and cell types involved in both the somatic instability and toxicity components of HD pathogenesis.


Assuntos
Doença de Huntington , Cognição , DNA , Estudo de Associação Genômica Ampla , Humanos , Proteína Huntingtina/genética , Doença de Huntington/genética , Doença de Huntington/patologia , Expansão das Repetições de Trinucleotídeos
2.
Biol Psychiatry ; 87(9): 857-865, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32087949

RESUMO

BACKGROUND: Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an expanded CAG repeat in the HTT gene. It is diagnosed following a standardized examination of motor control and often presents with cognitive decline and psychiatric symptoms. Recent studies have detected genetic loci modifying the age at onset of motor symptoms in HD, but genetic factors influencing cognitive and psychiatric presentations are unknown. METHODS: We tested the hypothesis that psychiatric and cognitive symptoms in HD are influenced by the same common genetic variation as in the general population by 1) constructing polygenic risk scores from large genome-wide association studies of psychiatric and neurodegenerative disorders and of intelligence and 2) testing for correlation with the presence of psychiatric and cognitive symptoms in a large sample (n = 5160) of patients with HD. RESULTS: Polygenic risk score for major depression was associated specifically with increased risk of depression in HD, as was schizophrenia risk score with psychosis and irritability. Cognitive impairment and apathy were associated with reduced polygenic risk score for intelligence. CONCLUSIONS: Polygenic risk scores for psychiatric disorders, particularly depression and schizophrenia, are associated with increased risk of the corresponding psychiatric symptoms in HD, suggesting a common genetic liability. However, the genetic liability to cognitive impairment and apathy appears to be distinct from other psychiatric symptoms in HD. No associations were observed between HD symptoms and risk scores for other neurodegenerative disorders. These data provide a rationale for treatments effective in depression and schizophrenia to be used to treat depression and psychotic symptoms in HD.


Assuntos
Doença de Huntington , Transtornos Psicóticos , Cognição , Estudo de Associação Genômica Ampla , Humanos , Doença de Huntington/complicações , Doença de Huntington/genética , Transtornos Psicóticos/complicações , Transtornos Psicóticos/genética , Fatores de Risco
3.
Am J Hum Genet ; 103(3): 349-357, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30122542

RESUMO

Age at onset of Huntington disease, an inherited neurodegenerative disorder, is influenced by the size of the disease-causing CAG trinucleotide repeat expansion in HTT and by genetic modifier loci on chromosomes 8 and 15. Stratifying by modifier genotype, we have examined putamen volume, total motor score (TMS), and symbol digit modalities test (SDMT) scores, both at study entry and longitudinally, in normal controls and CAG-expansion carriers who were enrolled prior to the emergence of manifest HD in the PREDICT-HD study. The modifiers, which included onset-hastening and onset-delaying alleles on chromosome 15 and an onset-hastening allele on chromosome 8, revealed no major effect in controls but distinct patterns of modification in prediagnosis HD subjects. Putamen volume at study entry showed evidence of reciprocal modification by the chromosome 15 alleles, but the rate of loss of putamen volume was modified only by the deleterious chromosome 15 allele. By contrast, both alleles modified the rate of change of the SDMT score, but neither had an effect on the TMS. The influence of the chromosome 8 modifier was evident only in the rate of TMS increase. The data indicate that (1) modification of pathogenesis can occur early in the prediagnosis phase, (2) the modifier loci act in genetic interaction with the HD mutation rather than through independent additive effects, and (3) HD subclinical phenotypes are differentially influenced by each modifier, implying distinct effects in different cells or tissues. Together, these findings indicate the potential benefit of using genetic modifier strategies for dissecting the prediagnosis pathogenic process in HD.


Assuntos
Doença de Huntington/genética , Mutação/genética , Adulto , Alelos , Cromossomos Humanos Par 15/genética , Cromossomos Humanos Par 8/genética , Feminino , Genótipo , Humanos , Proteína Huntingtina/genética , Masculino , Fenótipo , Expansão das Repetições de Trinucleotídeos/genética
4.
Eur J Hum Genet ; 25(11): 1202-1209, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28832564

RESUMO

Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by expansion of a CAG trinucleotide repeat in HTT, resulting in an extended polyglutamine tract in huntingtin. We and others have previously determined that the HD-causing expansion occurs on multiple different haplotype backbones, reflecting more than one ancestral origin of the same type of mutation. In view of the therapeutic potential of mutant allele-specific gene silencing, we have compared and integrated two major systems of HTT haplotype definition, combining data from 74 sequence variants to identify the most frequent disease-associated and control chromosome backbones and revealing that there is potential for additional resolution of HD haplotypes. We have used the large collection of 4078 heterozygous HD subjects analyzed in our recent genome-wide association study of HD age at onset to estimate the frequency of these haplotypes in European subjects, finding that common genetic variation at HTT can distinguish the normal and CAG-expanded chromosomes for more than 95% of European HD individuals. As a resource for the HD research community, we have also determined the haplotypes present in a series of publicly available HD subject-derived fibroblasts, induced pluripotent cells, and embryonic stem cells in order to facilitate efforts to develop inclusive methods of allele-specific HTT silencing applicable to most HD patients. Our data providing genetic guidance for therapeutic gene-based targeting will significantly contribute to the developments of rational treatments and implementation of precision medicine in HD.


Assuntos
Haplótipos , Doença de Huntington/genética , Linhagem Celular , Células-Tronco Embrionárias/metabolismo , Fibroblastos/metabolismo , Frequência do Gene , Heterozigoto , Humanos , Proteína Huntingtina/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Polimorfismo Genético
5.
Am J Hum Genet ; 98(2): 287-98, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26849111

RESUMO

Huntington disease (HD) is caused by an expanded HTT CAG repeat that leads in a length-dependent, completely dominant manner to onset of a characteristic movement disorder. HD also displays early mortality, so we tested whether the expanded CAG repeat exerts a dominant influence on age at death and on the duration of clinical disease. We found that, as with clinical onset, HD age at death is determined by expanded CAG-repeat length and has no contribution from the normal CAG allele. Surprisingly, disease duration is independent of the mutation's length. It is also unaffected by a strong genetic modifier of HD motor onset. These findings suggest two parsimonious alternatives. (1) HD pathogenesis is driven by mutant huntingtin, but before or near motor onset, sufficient CAG-driven damage occurs to permit CAG-independent processes and then lead to eventual death. In this scenario, some pathological changes and their clinical correlates could still worsen in a CAG-driven manner after disease onset, but these CAG-related progressive changes do not themselves determine duration. Alternatively, (2) HD pathogenesis is driven by mutant huntingtin acting in a CAG-dependent manner with different time courses in multiple cell types, and the cellular targets that lead to motor onset and death are different and independent. In this scenario, processes driven by HTT CAG length lead directly to death but not via the striatal pathology associated with motor manifestations. Each scenario has important ramifications for the design and testing of potential therapeutics, especially those aimed at preventing or delaying characteristic motor manifestations.


Assuntos
Doença de Huntington/genética , Mutação , Proteínas do Tecido Nervoso/genética , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Alelos , Criança , Pré-Escolar , Estudos de Coortes , Corpo Estriado/metabolismo , Haplótipos , Humanos , Proteína Huntingtina , Doença de Huntington/mortalidade , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/metabolismo , Adulto Jovem
6.
Am J Hum Genet ; 97(3): 435-44, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26320893

RESUMO

Huntington disease (HD) reflects the dominant consequences of a CAG-repeat expansion in HTT. Analysis of common SNP-based haplotypes has revealed that most European HD subjects have distinguishable HTT haplotypes on their normal and disease chromosomes and that ∼50% of the latter share the same major HD haplotype. We reasoned that sequence-level investigation of this founder haplotype could provide significant insights into the history of HD and valuable information for gene-targeting approaches. Consequently, we performed whole-genome sequencing of HD and control subjects from four independent families in whom the major European HD haplotype segregates with the disease. Analysis of the full-sequence-based HTT haplotype indicated that these four families share a common ancestor sufficiently distant to have permitted the accumulation of family-specific variants. Confirmation of new CAG-expansion mutations on this haplotype suggests that unlike most founders of human disease, the common ancestor of HD-affected families with the major haplotype most likely did not have HD. Further, availability of the full sequence data validated the use of SNP imputation to predict the optimal variants for capturing heterozygosity in personalized allele-specific gene-silencing approaches. As few as ten SNPs are capable of revealing heterozygosity in more than 97% of European HD subjects. Extension of allele-specific silencing strategies to the few remaining homozygous individuals is likely to be achievable through additional known SNPs and discovery of private variants by complete sequencing of HTT. These data suggest that the current development of gene-based targeting for HD could be extended to personalized allele-specific approaches in essentially all HD individuals of European ancestry.


Assuntos
Evolução Molecular , Haplótipos/genética , Doença de Huntington/genética , Proteínas do Tecido Nervoso/genética , Expansão das Repetições de Trinucleotídeos/genética , População Branca/genética , Sequência de Bases , Efeito Fundador , Heterozigoto , Humanos , Proteína Huntingtina , Dados de Sequência Molecular , Linhagem , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA
7.
Neurology ; 79(16): 1708-15, 2012 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-23035064

RESUMO

OBJECTIVE: To evaluate the relationship of striatal involvement in Huntington disease (HD) to involvement in other brain regions, CAG repeat size, onset age, and other factors. METHODS: We examined patterns of neuropathologic involvement in 664 HD brains submitted to the Harvard Brain Tissue Resource Center. Brains with concomitant Alzheimer or Parkinson changes (n = 82), more than 20% missing data (n = 46), incomplete sample submission (n = 12), or CAG repeat less than 36 (n = 1) were excluded, leaving 523 cases. Standardized ratings from 0 (absent) to 4 (severe) of gross and microscopic involvement were performed for 50 regions. Cluster analysis reduced the data to 2 main measures of involvement: striatal and cortical. RESULTS: The clusters were correlated with each other (r = 0.42) and with disease duration (striatal: r = 0.35; cortical: r = 0.31). The striatal cluster was correlated with HD repeat size (r = 0.50). The cortical cluster showed a stronger correlation with decreased brain weight (r = -0.52) than the striatal cluster (r = -0.33). The striatal cluster was correlated with younger death age (r = -0.31) and onset age (r = -0.46) while the cortical cluster was not (r = 0.09, r = -0.04, respectively). CONCLUSIONS: The 2 brain clusters had different relationships to the HD CAG repeat size, onset age, and brain weight, suggesting that neuropathologic involvement does not proceed in a strictly coupled fashion. The pattern and extent of involvement varies substantially from one brain to the next. These results suggest that regional involvement in HD brain is modified by factors which, if identified, may lend insight into novel routes to therapeutics.


Assuntos
Córtex Cerebral/patologia , Doença de Huntington/patologia , Neostriado/patologia , Adulto , Idade de Início , Idoso , Autopsia , Encéfalo/patologia , Cadáver , Núcleo Caudado/patologia , Análise por Conglomerados , Feminino , Gliose/patologia , Humanos , Doença de Huntington/genética , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Neurônios/patologia , Tamanho do Órgão , Repetições de Trinucleotídeos
8.
Am J Hum Genet ; 90(3): 434-44, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-22387017

RESUMO

Age at the onset of motor symptoms in Huntington disease (HD) is determined largely by the length of a CAG repeat expansion in HTT but is also influenced by other genetic factors. We tested whether common genetic variation near the mutation site is associated with differences in the distribution of expanded CAG alleles or age at the onset of motor symptoms. To define disease-associated single-nucleotide polymorphisms (SNPs), we compared 4p16.3 SNPs in HD subjects with population controls in a case:control strategy, which revealed that the strongest signals occurred at a great distance from the HD mutation as a result of "synthetic association" with SNP alleles that are of low frequency in population controls. Detailed analysis delineated a prominent ancestral haplotype that accounted for ∼50% of HD chromosomes and extended to at least 938 kb on about half of these. Together, the seven most abundant haplotypes accounted for ∼83% of HD chromosomes. Neither the extended shared haplotype nor the individual local HTT haplotypes were associated with altered CAG-repeat length distribution or residual age at the onset of motor symptoms, arguing against modification of these disease features by common cis-regulatory elements. Similarly, the 11 most frequent control haplotypes showed no trans-modifier effect on age at the onset of motor symptoms. Our results argue against common local regulatory variation as a factor influencing HD pathogenesis, suggesting that genetic modifiers be sought elsewhere in the genome. They also indicate that genome-wide association analysis with a small number of cases can be effective for regional localization of genetic defects, even when a founder effect accounts for only a fraction of the disorder.


Assuntos
Cromossomos Humanos Par 4 , Doença de Huntington/genética , Idade de Início , Alelos , Estudos de Casos e Controles , Efeito Fundador , Estudo de Associação Genômica Ampla/métodos , Haplótipos , Humanos , Mutação , Polimorfismo de Nucleotídeo Único , Repetições de Trinucleotídeos
9.
BMC Med Genet ; 7: 71, 2006 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-16914060

RESUMO

BACKGROUND: Age at onset of Huntington's disease (HD) is correlated with the size of the abnormal CAG repeat expansion in the HD gene; however, several studies have indicated that other genetic factors also contribute to the variability in HD age at onset. To identify modifier genes, we recently reported a whole-genome scan in a sample of 629 affected sibling pairs from 295 pedigrees, in which six genomic regions provided suggestive evidence for quantitative trait loci (QTL), modifying age at onset in HD. METHODS: In order to test the replication of this finding, eighteen microsatellite markers, three from each of the six genomic regions, were genotyped in 102 newly recruited sibling pairs from 69 pedigrees, and data were analyzed, using a multipoint linkage variance component method, in the follow-up sample and the combined sample of 352 pedigrees with 753 sibling pairs. RESULTS: Suggestive evidence for linkage at 6q23-24 in the follow-up sample (LOD = 1.87, p = 0.002) increased to genome-wide significance for linkage in the combined sample (LOD = 4.05, p = 0.00001), while suggestive evidence for linkage was observed at 18q22, in both the follow-up sample (LOD = 0.79, p = 0.03) and the combined sample (LOD = 1.78, p = 0.002). Epistatic analysis indicated that there is no interaction between 6q23-24 and other loci. CONCLUSION: In this replication study, linkage for modifier of age at onset in HD was confirmed at 6q23-24. Evidence for linkage was also found at 18q22. The demonstration of statistically significant linkage to a potential modifier locus opens the path to location cloning of a gene capable of altering HD pathogenesis, which could provide a validated target for therapeutic development in the human patient.


Assuntos
Cromossomos Humanos Par 6 , Doença de Huntington/genética , Modelos Genéticos , Repetições de Trinucleotídeos/genética , Adolescente , Adulto , Idade de Início , Idoso , Ligação Genética , Marcadores Genéticos , Genoma Humano , Humanos , Pessoa de Meia-Idade , Locos de Características Quantitativas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...